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*i -INTRODUCTION

,,vvvvvv,
*:, A. Overview. The application of near-infrared reflectance analysis (NIRA)

nVVWVVAin

as an analytical technique has been concentrated mainly in the agricultural area

1-4where it originated. These agricultural applications are characterized
by the need to determine a limited number of constituents in a very large

number of Individual but similar samples. In contrast to this situation,

-samples encountered in most industrial analytical laboratories are widely

varied in kind and the number of very similar samples is limited.

If NIRA is to be applied broadly to industrial chemical analysis, it

must be modified to sharply reduce the developmental effort needed to set up

an individual method. At present, the establishment of a NIRA procedure

requires the assembly of a fairly large set of standard samples where compo-

sition has already been established by a reference method or methods. The

reflectance of the samples must then be measured at a substantial number

of points in the near-infrared spectral region, and the resulting data sub-

jected to a multilinear regression algorithm. This algorithm then generates

the choice of analytical wavelengths and yields a "correlation equation"

which relates concentration of desired constituents to reflectance at various

near-infrared wavelengths. This latter calculation step is very demanding
of computer hardware and processing time, particularly for high-performance

NIRA instruments that cover a wide range of wavelengths, a probable requirement

for industrial analysis. In fact, these computational requirements are so

demanding that they have often forced shortcuts in methods development and

optimization, and have limited the performance of the NIRA system. This
limitation is manifested by incomplete optimization of the analytical wave-

length set, whereby either too few wavelenqths are examined, abridged wave-
-.1
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length selection criteria are used, or too few or incorrect wavelengths

are selected for the NIRA procedure.

This limitation also encourages incomplete testing and evaluation of

the developed NIRA method, which leads to the widespread use of poorly under-

stood algorithms and the retarded development of improved ones. This lack of

understanding and the workload of existing methods have often been great

enough to discourage people from examining the NIRA approach, and have acted

as a brake on its wider acceptance and application.

In the present paper, an algorithm is described and evaluated for sub-

stantially accelerating the wavelength and calibration coefficient selection

process of NIRA. This algorithm is used to find "correlation equations"

for protein in wheat and benzene in a hydrocarbon mixture. Bias-corrected

standard errors of prediction obtained with the new algorithm reached 0.26

percent protein in wheat and 1.01 percent benzene by volume. Comparisons

of the algorithm with several others based on regression show improvements in

computation time ranging from a few percent to as much as 200-fold. It is

also discussed how the novel method might prove advantageous in the reduction

of overfitting and in the improvement of NIRA accuracy.

B. Calibration Procd The general pattern for establishing

a NIRA calibration is described in a review article by Watson,5 and will be

briefly summarized here for clarity. The first step in establishing a NIRA

calibration is to obtain a sample set in which the desired characteristic or

sample constituent has been previously determined by a reference chemical or

spectroscopic technique. An example of such a set would be wheat samples whose

protein content had been established by Kjeldahl determinations. The sample

set is randomly divided into two subsets, one for solving the regression
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procedure (training) and one for testing the regression (prediction). Next,

the near-infrared diffuse-reflectance spectrum for each sample is obtained.

The spectra from the training set are then analyzed by some form of multiple

linear regression. Typically, -log reflectance values (R) are regressed

against the chemically determined concentrations to identify a group of

wavelengths at which R best predicts the desired constituent in the training

set. A number of alternative linear regression techniques are currently

available to establish the NIRA calibration. These techniques include (but

are not limited to) stepwise, all possible combinations, all possible pairs

stepwise, and all possible triplets stepwise.

Stepwise regression is well known in statistical applications.6  In

its most general form a stepwise regression algorithm calculates the linear

regression between two sets of variables and establishes a statistical con-

fidence level to their degree of coherence. It then adds new values to or

deletes old ones from one of the sets in an attempt to improve the coherence;

coherence is usually expressed in terms of a correlation coefficient. Pro-

cedures involving the addition or deletion of values are called forward

stepwise and backward stepwlse regression, respectively. In its application

to NIRA, forward stepwise regression involves the addition of R values at

new wavelengths and suffers from the problem that the newly added wavelength

--? is often not the best wavelength to add. Moreover, background interferences

can cause omission of an important wavelength. Backward stepwise regression

in NIRA requires that the total number of wavelengths that are employed be

small enough that the regression containing all wavelengths can be calculated

in a reasonable time, as the starting point for the backwards stepping. This

requirement is usually inconsistent with the amount of data generated by a

spectral scanning instrument.

• '-" :'' '. ". " ' " ,,. . '.:. ' ',:. .. ': . '.. . -. . - ' . --. - ,.'- .. - . -. '.. .. . -.. ,':: . _
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The "all-possible-combinations" regression improves upon the forward

stepwise approach, in that background interferences do not bias the selection

of wavelengths. The drawback to the all-possible-combinations technique

is the enormous number of calculations it requires. This number is equal

to 2m , where m is the total number of wavelengths being employed, re-

stricting this approach to those applications with the smallest data sets.

In an effort to combine the advantages of the stepwise and all-possible-

combinations methods, several hybrid techniques such as "all-possible-pairs

stepwise" and "all-possible-triplets stepwise" have been developed. 7 These

techniques begin with all possible pairs or triplets of wavelengths, respectively,

and proceed by means of a forward stepwise regression. In this way, the best

pair or triplet of wavelengths can not be hidden by background interferences,

yet the number of required calculations is much less than in the all-possible-

combinations method. To ensure self-consistency, one of the wavelengths

earlier adopted in the calibration is dropped and the best wavelength to

add is then determined by stepwise regression. If the calibration is self-

consistent, this new wavelength is the sam as the one just deleted. If not,

the new wavelength is retained, a different one deleted, and the process

repeated until the wavelength which is deleted is subsequently restored by the re-

gression process.

After using any of these regression techniques one obtains a calibration

of the form:

C "B + BiRi + B2_2 + ... + BR (1)

hoan

where Be.*.. B are the coefficients of intercept and partial slopes from
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the regression equation, R is -log (reflectance) of the sample at the Jth

wavelength and C is the concentration of the desired species in the sample.

Once the B0 through B coefficients are determined, the standard deviation

between the actual and predicted concentrations -for the training set (corrected

for the statistical degrees of freedom) is computed and called the "standard

error of estimation" (SEE). The mathematical definition of SEE is given in

Eq. (2).

N s
SEE = (Ns - 1 - Nw)-E e] (2)

1=1

where Ns is the number of samples in the training set, Nw is the number of

wavelengths kept and ei is the difference between the true component concen-

tration and the value predicted by Eq. 1 for the ith sample.

Next, the deduced regression equation (Eq. 1) is used to calculate the

concentration of the desired constituent in each of the samples in the pre-

diction set. From these computed concentrations and those known from the

earlier independent chemical analysis (e.g. Kjeldahl determination), another

standard deviation.is determined, termed the "standard error of prediction"

(SEP). The definition of SEP is given in Eq. (3).
F. Ns

SEP- [(N -l e 2 (3)

S.

where N' is the number of samples in the prediction set.
s

. The value of SEP is typically used as a measure of the performance of

Eq. 1; however, a bias-corrected SEP better estimates how well the calibration

will perform in the field, where routine comparisons between NIRA results

,. . ,, °. . . . . . . . . -. . . . . . . . . .
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and results from the reference chemical method are periodically used to

adjust the long-term drift of the NIRA spectrophotometer. This bias-corrected

SEP is given by the equation:

Ns

SEP (biased) [(N; 1)'l (ei -Bias)2 (4)

where

Bias = (Ns)" ,e1  (5)
I -1

C. Row-reduction. Because NIRA is similar to multi-component uv-visible
AVWUVVV~VVV~

spectrophotometry, it would be very useful to transfer the knowledge and

technology of this latter field to NIRA. Unfortunately, this transfer is

not straightforward. A NIRA spectrum contains virtually no peaks attributable

to a single species, so individual "absorptivities" cannot be measured and

"! background corrections are very complex. In fact, it was this very complexity

that led to the introduction of regression techniques. Unfortunately,

multilinear regression techniques are very easily overfitted and can be

very slow.

In an attemptto reduce the overfitting of multillnear regression and

shorten computation time, a simplifying assumption has been made in the

" - present study. Specifically, if the errors in the reference chemical method

and in the measured diffuse reflectance spectrum are small, a simple linear-

* algebra solution of j unknowns with j equations will give a good first

approximation to a multi-linear regression. To test the assumption, the

Gauss-Jordan reduction8 method for treating linear equations was used to

. .
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solve Eq. (1) for several NIRA sample sets. The authors have elected to

call this particular application of Gauss-Jordan reduction "row-reduction".

I. THEORY

Gauss-Jordan reduction is a general approach to solving a system of n

equations for n unknowns. A full description of the mathematics involved

can be found in Reference 8. Briefly, to solve for a single variable in

a system of equations such as the one shown in Eq. (6) [which can be re-

written in matrix form as Eq. (7)],each equation can be multiplied by some

constant and then subtracted from another equation. For example, to solve

Eqs. (6) and (7) for the variable x, the second row can be multiplied by

-1/2 and thethird row multiplied by -3/2. These operations transform Eq.

(7) into Eq. (8).

3x + 2y + 3z = 16
6x + 2y + 8z = 28
2x + 6y + 4z = 26 (6)

3 2 3 16!
6 2 8 28

2 6 4 26 (7)

-3, - -14
"-3 -6 1-39 (8)

-

d ,; ""'" -; ''''' -, ' ,,r-" : -:,' / "" : "''' :'': : '-'"':"'''. ,i T" '" .. 'i-i--. ' '"'''''''"-:.:.--".
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When row 1 of Eq. (8) is added to rows 2 and 3, the resulting matrix is

shown in Eq. (9).

- F -7 -3 -23 (9)

This process can be continued to solve for y and z. When the matrix is

entirely solved, it is in the form shown in Eq. (1O),where I is the identity

" i
A2

,%:
A Ap (10)

"

A matrix and Ap is the answer to the pth variable in the equation. For Eq.

(6), x is the first variable, y is the second and z is the third, and their

solutions are found in A,, A2 and As, respectively.

The adaptation of Gauss-Jordan reduction to row-reduction NIRA

is straightforward. The calibration of a NIRA sample set proceeds through

the collection of spectra as described earlier. After the diffuse reflectance

spectrum of each sample is obtained, the first j [where J is the number of

terms in Eq. (1)] reflectance (R) values in the spectrum for each sample

in the training set are placed in a matrix. It is important to recognize

that the J reflectance values used in this matrix do not constitute the

entire sample spectrum. Rather, they are merely the first j values of the
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entire spectrum. The standard concentration of the sought-for species in

each sample of the training set is also placed in the matrix; these concen-

trations correspond to the known values (right-hand side) of Eq. (4) and

are termed the augmented portion of the matrix. The resulting matrix is

shown pictorially in Fig. I. Figure 1 is just the matrix form of the set

of equations (like Eq. 1) resulting from several samples. The unknowns on

the left-hand side of the matrix illustrated in Fig. 1 correspond to the

B, through B. values of Eq. (1).

To solve the matrix in Fig. I via Gauss-Jordan reduction, the matrix

rows are rearranged to cause the largest reflectance (R) value in each

column to lie on the diagonal. This rearrangement is called row interchanging.

The matrix in Fig. I is then solved successively for each Bn term as described

earlier; as a consequence, the remaining R values become orthogonal to those

which were used to solve for the B terms. This behavior can be seen in Eq. (9);

the first row of Eq. (9) is the only one which contains information about the

unknown value x. When the matrix is completely solved and reduced to the form

of Eq. (10), the first row is orthogonil to the rest of the matrix and con-

tains information only about x. By means of row interchanging, the most

mutually orthogonal samples are chosen to determine the Bn terms.

After the Bn values have been found, the solution is validated by com-

paring actual vs. predicted values for the training set and calculating a

SEE and a correlation coefficient (r value). This r value is saved for com-

parison with later solutions.

Once the r value for the first matrix has been computed, the column

corresponding to the wavelength with the largest B multiplier is dropped

' from the matrix and the R values for the next (j + 1) wavelength are put

in its place. The computation and matrix solution are then repeated. After

m l t,,aim ma mi, .e L- m ia - -- i ".. . . . .T .t i , ' . .. . . .



every wavelength that was recorded in the original spectrum has proceeded

through this computation, the entire process is repeated, using the final

matrix as a starting point. All wavelengths are again stepped through the

matrix solution procedure; after this second iteration, the combination

which gave the best r value is recalled and used as the solution to Eq. (1).

In the wavelength-stepping procedure, the dropping of the column with

the largest B value has an interesting effect. If reflectances at all wave-

lengths have roughly equivalent magnitudes, a reasonable assumption in the near

infrared, the wavelength with the largest B value will contain the most

information about the sought-for species. Because it is this "most important"

wavelength that is dropped, the selection operation rapidly collects the most

orthogonal wavelengths (those least correlated with the desired constituent and

most correlated with background). This same selection criterion prevents the

matrix from becoming "ill determined" and therefore subject to large roundoff

error. An "ill determined" matrix typically contains very large positive

and negative B values in pairs. Because the largest positive B value will

be dropped by the selection criterion of row reduction, the ill-determined

pairs are broken up and the matrix becomes well behaved and less subject to

roundoff error.

When the procedure steps through the wavelengths a second time, the

same selection criterion naturally seeks out the wavelength best correlated

with the desired constituent. As each new wavelength is added, the solution

to the linear equation uses all of the collected background wavelengths to

calculate a background-corrected calibration. Because the best correlation

with the concentration of the desired constituent is stored, the wavelength

which Is retained is the one that shows the greatest ability to be background-

corrected.
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One might initially surmise that it would be better to drop the smallest

rather than the largest B value during the wavelength-stepping procedure.

However, because bands in the near-infrared portion of the spectrum are

strongly overlapped, precise background correction is critical for a success-

ful calibration. Dropping the smallest B value during the row-reduction

process would keep only those wavelengths which are most highly correlated

with the desired constituent and would fail to provide adequate background

correction.

II. EXPERIMENTAL

lvvwvwwJxvv~

A set of simulated spectra was used initially to test the row-reduction

algorithm. Four series of random numbers were used to simulate the absorbance

spectrum of four pseudo-species at 15 pseudo-wavelengths in each spectrum.

Ten pseudo-samples were generated by combining randomly selected amounts of

each of the four pseudo-species. The spectrum of each sample was then cal-

culated from a strict application of Beer's law, assuming additivity of the

absorbances of the sample constituents. After the simulated spectra were

computed, various levels of random noise were added to the spectral and con-

centration values.

In the first real test of the new algorithm, a set of absorbance data

for methyl-red and methyl-orange mixtures, obtained from reference 9, was

used to predict solution pH. The data consisted of absorbances obtained

at discrete wavelengths ranging from 375 to 575 nm.

In order to compare the new algorithm with those employed earlier, a

set of 100 near-Infrared diffuse-reflectance spectra of ground wheat samples

was obtained from the USDA, Beltsville, MD, and used to predict the percent

protein in wheat. Each sample had been assayed for protein by 32 replicate

- . - ,. .
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KIjeldahl determinations. The exact description of the data set has been

published elsewhere.10  The data were used as received with the exception

that only every fourth wavelength was considered, for a total of 125 wave-

lengths. These 125 wavelengths ranged from 1 to 2.6 pm in increments of

12.8 nm. The reported instrumental bandpass was 7 nm and no spectral

averaging was used. Fifty samples were used to train the new algorithm

and the remaining 50 were used to test it.

* Finally, a set of 94 absorbance spectra of synthetic mixtures of benzene,

cyclohexane, n-heptane, and iso-octane was used to predict the concentrations

of benzene. These spectra were obtained from a Digilab FTS 15C Fourier-

Transform infrared spectrometer at a resolution of 8 cm" 1. A spectral range

of 1.67 to 2.5 pm was considered. Of the 94 measured spectra, 47 samples

were used to train the algorithm and 45 samples were used to test it. Two

sample spectra were discarded because of verified instrumental error during

their acquisition.

III. RESULTS

IVVVVVV

A. Si edSectra. Experiments with simulated spectra simplified

the evaluation of the row-reduction algorithm under varying con-

ditions. Several general trends were apparent from these experiments: 1)

when no noise was added to the simulated spectra, the algorithm generated

an exact solution to Eq. (1) with a SEE of 0; 2) when noise was selectively

added, the algorithm consistently chose those wavelengths with the least

noise; 3) when additional simulated wavelengths were added but which con-

tained no information (i.e. were not related to sample composition), they

/ ..--. ,-,,,..... ,.... .. ....-... -... , ..... . .,.4. . . . . . . .. ..
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were never chosen when the signal-to-noise ratio of the overall spectrum

was greater than 12; 4) when the signal-to-noise of a spectrum was less

than 12, the algorithm was less able to distinguish between wavelengths

containing information and those containing no information. The probability

that an invalid wavelength would be chosen increased as the signal-to-noise

ratio decreased. These trends show that the new row-reduction algorithm

is viable as long as the signal-to-noise ratio of a spectrum is large enough

to make any data reduction worthwhile.

B. Meth 1 Red. 1 t . The correlation with pH in

mixtures of methyl-orange and methyl-red solution spectra gave statistical

correlations ranging from r = 0.9798 to r = 0.9999, as shown in Table I.

-. These results clearly indicate that the row-reduction algorithm performs

well for real solutions where Beer's law is obeyed.

C. Determination of Protein in Wheat. The correlation for protein in

wheat is shown in Table II. These results compare well with those obtained

by the technique of curve fitting. It should be noted that the number

of samples and the number of wavelengths examined at a time in the row-

*: reduction algorithm are necessarily equal because of the fundamental re-

lationship of m independent equations for m independent unknowns in linear

algebra. The correlation obtained by the row-reduction method using 7

wavelengths is shown graphically in Fig. 2; the wavelengths and their

respective B coefficients (cf. Eq. 1) are listed in Table III.

D. Determination of Benzene in H drocarbon Mi t s. The correlation

for benzene in hydrocarbons is shown graphically in Fig. 3; the wavelengths

used and their respective B coefficients are listedin Table IV. The two
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samples plotted as circles in Fig. 3 were known to be in error because of

an inadequate instrumental N2 purge. These latter samples have not been

used in calculating the least-squares line, but were retained on the plot

to illustrate the possible effect and magnitude of instrumental errors.

Although 47 points are plotted in Fig. 3, the precision of the prediction

is such that many of the points are not spatially resolvable.

IV. DISCUSSION

A. Co utational Efficienc of the Row-Reduction Al orithm. The pre-

diction of protein in wheat shown In Table II and Fig. 2 verifies that the

row-reduction algorithm is competitive with other regression techniques

as far as standard error of prediction is concerned. There are other con-

siderations, however, which favor row-reduction over multilinear regression.

One of these considerations is computation time.

The number of multiplications and divisions required to solve Eq. 1

2.: for a single matrix is equal to:

[Nw' + 3(Ns + l)(NW)2 + (3N +4)N -6Ns]/6 (11)

w3N + 4) s w (11

.4

where NW is the number of wavelengths in Eq. 1 and Ns is the number of samples

in the training set. In turn, the total number of matrices which must be

solved to obtain a calibration via row reduction is approximately the total

number of wavelengths to be considered (N.) times the number Of passes through

the wavelength set. Because the number of passes is usually 2, the number

of matrices to be solved is ordinarily 2N X. Multiplying the number of multi-

plications and divisions per matrix (Eq. 11) by the number of matrices (2N.)

-°
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gives the total number of computations (NR):

NR = (Nx-Nw3 + 3(Ns + l)(NwZ) + (3Ns + 4) Nw - 6Ns]/3 (12)

The number of multiplications and divisions necessary to obtain a NIRA

- calibration by "all possible pairs" or "all possible triplets" stepwise

regression can be deduced by a two-part computation. The first part is

the calculation of the cross terms:

.- . . ( N )  ( N + I )

# Cross Terms 2 (13)

Each of these terms is composed of N multiplications so the total number

of computations for determining the cross terms is:

":"(NA)(NX + 1 )(N S )

# Cross Term Multiplications = ( (14)

The second part of the regression calculation is the inversion of

matrices. Each i-by-i matrix inversion requires is multiplications and

divisions. The number of matrices to be inverted by the all-possible-pairs

stepwise regression is

(NA)(NA - 1)

2 + 2(Nw -2)(N X)  
(15)

The corresponding number for theall-possible-triples stepwise regression is

i,: . . ... . . . . . . . . . . . .



(N)(N- l)(NA - 2)
6+ 2(N - 3)NX (16)." 6

where both Eq. 15 and 16 assume one checkback per wavelength addition.

From Eqs. 15 and 16 and the number of multiplications and divisions

required to invert each matrix, Eqs. 17 and 18 can be obtained.

No. of calculations in NW

all-possible-pairs stepwise = 4(NX)(NX - 1) + 2 Z iS(NX) (17)
regression i=3

":" Nw
No. of calculations in all-
possible-triples stepwise = (9/2)(Nx)(NX - I)(NX - 2) + 2 Z i'(NX) (18)

- regression i =4

An examination of Eq. 12 and Eqs. 14 plus 17 or Eqs. 14 plus 18

gives a semiquantitative basis of comparision of the row-reduction and

regression methods. This comparison is tabulated in Table V. It can be

observed that row-reduction becomes much more efficient as N >> N

B. Other Advantags of Row Reduction. Row reduction has several

advantages over regression other than computational efficiency. These

advantages include an increased immunity to baseline drift and to over-

fitting.

If spectral baseline drift occurs, all wavelengths shift up or down

together. Therefore, the offset caused by these shifts can be avoided if

the B coefficients of Eq. (1) add to zero. The set of typical B coefficients

shown in Table III, calculated by row reduction, add very nearly to zero.

This feature is inherent in the row-reduction algorithm and avoids the

problem of forcing the sum of the regression coefficients to zero. Regres-

sion techniques do not inherently possess this feature.

.................
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Overfitting occurs when the solution to Eq. (1) reflects trends in the

training sample set that are not present in the prediction set. Row-reduction

helps reduce the likelihood of overfitting through its use of only the most

orthogonal samples to determine the B coefficients. This selection prevents

averaging or diluting the uniqueness of individual samples and forces the

prediction to be valid for the most unusual samples in the training set, not

for the most "typical" samples.

Finally, row-reduction allows an a priori test for overfitting even if

the samples whose constituents are to be predicted have not been chemically

determined (i.e., are not part of the training or prediction sets). In

particular, If the spectrum of a new sample (at the wavelengths used in

Eq. (1)) cannot be formed by some combination of the spectra of the samples

used to solve Eq. (1), that sample cannot be accurately predicted. This

method for detecting the presence of overfitting will be discussed in a

subsequent paper.

V. CONCLUSION
AV~rVVVV%&

The new row-reduction algorithm appears to be a valid technique for

finding the correlation between chemical composition and the absorbance or

reflectance spectra for spectrally and chemically complex samples. Row

reduction has the advantages of computational ease and increased resistance

a to spectral errors compared to regression methods. Finally, row reduction

is conceptually more facile than a multillnear regression, a feature which

should aid future research in and interpretation of the NIRA technique.
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TABLE I. Correlation with pH in Mixtures of ethyl-Red and ethyl-
Orange Solutions.

Correlation

Number of Wavelengths Coefficient
Chemical System Number of Samples Retained (r value)

Methyl Red 4 2 0.9798

Methyl Orange 4 2 0.9999

Mixture 5 2 0.9934



TABLE II. Prediction of Percent Protein in Wheat Using the Row-Reduction Algorithm

Number of Wavelengths Number of Samples
Retained for Prediction* Used - Both Methods Reliability of

by Row-Reduction Predicted Percent Protein

Algorithm Row-Reduction Reference 11
SEE SEP SEE SEP

2 2 1.36 1.15 2.28 2.16

3 3 0.40 0.46 2.30 2.30

4 4 0.38 0.38 0.243 0.30
5 5 0.36 0.36 0.24 0.30

6 6 0.31 0.35 0.243 0.30

7 7 0.27 0.26 0.14 0.15

*Reference 11 uses 300 wavelengths for each prediction

-'.
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TABLE III. Seven-wavelength Correlation for Protein in Wheat
(See also Fig. 2)

WAVELENGTH MULTIPLIER

(In) (B value)

1.73 900.3

1.74 -967.6

1.86 5.1

1.97 34.2

2.15 1.3

2.17 42.9

2.52 -18.0

.j.

............

.... . . . . . . . . . . . . . . . .
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TABLE IV. Eight-wavelength Correlation for .Benzene in Hydrocarbons.
(See also Fig. 3)

WAVELENGTH MULTIPLIER
(NOm (B value)

2.011 0.00073
2.023 0.00971

2.164 0.11889

2.168 -0.26828

2.171 0.29825

2.175 -0.24175

2.179 0.12348

2.189 -0.03678



TABLE V. Number of Computations for Finding the Best 5 and 6-Wavelength Correlations
by Row-Reduction and Regression Methods.*

Regression methods

* Number of Wavelengths Number of All possible All possible Row
to Search Samples Pairs stepwise Triples stepwise Reduction

19 10 20 K 43 K 12 K

19 25 21 K 44 K 32 K

19 50 27 K 51 K 64 K

140 10 297 K 12 M 90 K

140 25 446 K 12 M 232 K

140 50 692 K 13 M 470 K

700 10 5.0 M 515 M 449 K

700 25 8.7 M 519 M 1.1 M

700 50 14 M 525 M 2.4 M

* K x 103; M x 106



FIGURE CAPTIONS

Figure 1. Data configuration of the row-reduction matrix.

Figure 2. Predicted vs. actual percent protein in wheat using new row-

reduction algorithm. Fifty samples were predicted using

seven wavelengths with a SEP of 0.26% protein.

Figure 3. Predicted vs. actual percent benzene in hydrocarbons. Crosses

represent valid data points. Circles represent data points

with instrumental errors. Forty-five samples were predicted

using eight wavelengths with a SEP of 1.01% benzene.
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